
Basic Data Management

Dr. Sarah Hunter

4/8/2020

Dealing with Real World Data

Working with real data can be tricky. Usually, the data you want either come as part of a dataset that is
too big with which to work, or they come as several different data sources. Perhaps you will also need to
transform a variable (e.g. take the log, divide by millions, etc.). There are even cases where you will need to
change the value labels of a variable. This R Help file will show you how to do these things. We will focus
here on simple Data Management using mostly R’s base commands. Later, if you are interested, I can point
you toward more advanced packages for data management called dplyr and tidyr.

Subsetting Data

Do you have too much data? Do you only want 1-2 variables from a dataset? Do you only want certain
years of observations? The following section will show you how to subset data in several ways to tackle these
problems.

Subsetting by Selecting Certain Variables

Some datasets such as the Quality of Governance and the VDem datasets are huge datasets that contain
hundreds of variables. Sometimes, you only need a few of those variables. To choose only a certain number of
variables, you can use the subset command. An example, using the Quality of Governance Data is below.
The subset command is usually structured by first creating a new object (qog.subset.ciri in the example
below), then then telling R which dataset you would like to split (qog in the example). From there, you then
tell R how you would like to split the data. In our example, we are splitting the data by only keeping certain
variables.

In the example, I take the Quality of Governance data, which, as you can see, is quite large, and only extract
the variables that I need from it (in this case, variables pertaining to the CIRI human rights measure). The
option to use here is the select option. This tells R to choose one or more columns. If you have more than
one variable to select, you must use the c() designation. This tells R that you have more than one column to
select.
#Setting Working Directory
setwd("/Users/sarahhunter/Documents")

#Loading the data

qog<-read.csv("qog_std_ts_jan20.csv")

#Making sure the data are loaded correctly
dim(qog)

[1] 15614 2086

1

#Subsetting by Selecting Certain Variables

qog.subset.ciri<-subset(qog, select = c(ccode, cname, year, ciri_assn, ciri_dommov,
ciri_formov, ciri_injud, ciri_physint, ciri_worker, ciri_speech))

summary(qog.subset.ciri)

ccode cname year ciri_assn
Min. : 4.0 Length:15614 Min. :1946 Min. :0.000
1st Qu.:218.0 Class :character 1st Qu.:1964 1st Qu.:0.000
Median :442.0 Mode :character Median :1982 Median :1.000
Mean :458.1 Mean :1982 Mean :1.113
3rd Qu.:694.0 3rd Qu.:2001 3rd Qu.:2.000
Max. :999.0 Max. :2019 Max. :2.000
NA's :9498
ciri_dommov ciri_formov ciri_injud ciri_physint
Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.000
1st Qu.:1.000 1st Qu.:1.000 1st Qu.:0.000 1st Qu.:3.000
Median :2.000 Median :2.000 Median :1.000 Median :5.000
Mean :1.518 Mean :1.453 Mean :1.122 Mean :4.981
3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:7.000
Max. :2.000 Max. :2.000 Max. :2.000 Max. :8.000
NA's :8953 NA's :8952 NA's :8987 NA's :9520
ciri_worker ciri_speech
Min. :0.000 Min. :0.000
1st Qu.:0.000 1st Qu.:0.000
Median :1.000 Median :1.000
Mean :0.912 Mean :0.974
3rd Qu.:1.000 3rd Qu.:2.000
Max. :2.000 Max. :2.000
NA's :9497 NA's :9495

Subsetting by Dropping Certain Variables

We can also subset our datasets by dropping certain variables. We can do this with the same select option.
The difference is that we put the - before each variable we want to drop. In the example below, I want to
drop CIRI’s independence of the judiciary from my dataset above. Then we could drop it by:
qog.subset.ciri2<-subset(qog.subset.ciri, select = -ciri_injud)
summary(qog.subset.ciri2)

ccode cname year ciri_assn
Min. : 4.0 Length:15614 Min. :1946 Min. :0.000
1st Qu.:218.0 Class :character 1st Qu.:1964 1st Qu.:0.000
Median :442.0 Mode :character Median :1982 Median :1.000
Mean :458.1 Mean :1982 Mean :1.113
3rd Qu.:694.0 3rd Qu.:2001 3rd Qu.:2.000
Max. :999.0 Max. :2019 Max. :2.000
NA's :9498
ciri_dommov ciri_formov ciri_physint ciri_worker
Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.000
1st Qu.:1.000 1st Qu.:1.000 1st Qu.:3.000 1st Qu.:0.000
Median :2.000 Median :2.000 Median :5.000 Median :1.000
Mean :1.518 Mean :1.453 Mean :4.981 Mean :0.912

2

3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:7.000 3rd Qu.:1.000
Max. :2.000 Max. :2.000 Max. :8.000 Max. :2.000
NA's :8953 NA's :8952 NA's :9520 NA's :9497
ciri_speech
Min. :0.000
1st Qu.:0.000
Median :1.000
Mean :0.974
3rd Qu.:2.000
Max. :2.000
NA's :9495

Subsetting By Selecting Certain Values of Variables

Sometimes, you only want to keep data based on the values of a certain variable. For this, you would need to
use the mathematical operators. For example, if you only wanted to keep observations for the years 2000 and
later, you can use the following code:
#Remember when using >, it means greater than.
#So if you want 2000 and later, you need to say greater than 1999

qog.ciri.2000<-subset(qog.subset.ciri2, year>1999)
summary(qog.ciri.2000)

ccode cname year ciri_assn
Min. : 4.0 Length:4220 Min. :2000 Min. :0.000
1st Qu.:218.0 Class :character 1st Qu.:2005 1st Qu.:0.000
Median :442.0 Mode :character Median :2010 Median :1.000
Mean :458.1 Mean :2010 Mean :1.181
3rd Qu.:694.0 3rd Qu.:2014 3rd Qu.:2.000
Max. :999.0 Max. :2019 Max. :2.000
NA's :807
ciri_dommov ciri_formov ciri_physint ciri_worker
Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.0000
1st Qu.:1.000 1st Qu.:1.000 1st Qu.:4.000 1st Qu.:0.0000
Median :2.000 Median :2.000 Median :5.000 Median :1.0000
Mean :1.503 Mean :1.504 Mean :5.094 Mean :0.8396
3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:7.000 3rd Qu.:1.0000
Max. :2.000 Max. :2.000 Max. :8.000 Max. :2.0000
NA's :777 NA's :778 NA's :805 NA's :809
ciri_speech
Min. :0.0000
1st Qu.:0.0000
Median :1.0000
Mean :0.9537
3rd Qu.:1.0000
Max. :2.0000
NA's :809

3

You can filter the data by any condition that you would like. You simply need to use R’s mathematical
operators to obtain the values you want. The following table provides a selection of mathematical operators
to use as conditions:

Operator Description
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== exactly equal to
!= not equal to

The following R code shows how to use those operators in the context of subsetting:
####Keeping observations before 2000####

qog99.1<-subset(qog, year<2000)

#or

qog99.2<-subset(qog, year<=1999)

####Keeping observations without missing values for Ciri Physical Integrity (ciri_physint)

qog.ciri.all<-subset(qog.subset.ciri, ciri_physint!=NA)

#Only Keeping Observations for Afghanistan

qog.ciri.afg<-subset(qog.ciri.2000, ccode==4)

You can even combine conditions in one line of code:
qog.ciri.2000.2<-subset(qog, year>1999, select = c(ccode, cname, year, ciri_assn,

ciri_dommov, ciri_formov, ciri_injud, ciri_physint,
ciri_worker, ciri_speech))

head(qog.ciri.2000.2)

ccode cname year ciri_assn ciri_dommov ciri_formov ciri_injud
55 4 Afghanistan 2000 0 0 1 0
56 4 Afghanistan 2001 0 0 0 0
57 4 Afghanistan 2002 0 0 0 0
58 4 Afghanistan 2003 NA NA NA NA
59 4 Afghanistan 2004 NA NA NA NA
60 4 Afghanistan 2005 1 0 0 0
ciri_physint ciri_worker ciri_speech
55 0 0 0
56 0 0 0
57 3 0 1
58 NA NA NA
59 NA NA NA
60 4 0 0

4

Merging Data

Sometimes the data you want come in two separate datasets. In this case, you would have to merge the two
or more files together. The key thing to remember with merging is that the observations in both datasets
must be defined or identified the same way. For example, if you are merging together a dataset about US
states, you can merge state names with state names or state abbreviates with state abbreviations, but not
state names with state abbreviates. When merging datasets with countries, you need should use country
codes rather than the names of countries. Some country names are different depending on which language
was used to write the name, the use of long form or short form names, etc. For example, some datasets
might list “South Korea”, where others would list “Republic of Korea”. R does not know that these two are
the same observation. Therefore, we usually use either country numeric codes from the Correlates of War
(called COW) Dataset, or alphabetic codes. In this case, we are using the COW codes. So we know to match
country code (ccode) 410 with all the 410 in the other datasets. I demonstrate the how to merge two data
sets in the following code.

First, I make another dataset from the larger Quality of Governance data using the subset command. Then I
use the merge command to combine the two datasets. For this command, you must specify which datasets are
to be merged. The second part is to indicate by which variables R should match the two datasets. You can
use up to two criteria. For this time series cross sectional data, we have both cross sectional units (countries)
and time series units (years) to match. We do this with they by.x and by.y options. The order here is very
important. The syntax should be followed exactly. If you put ccode first for the first dataset, it must also be
first in the second dataset. Remember to keep your x’s and y’s straight.
#Creating a new dataset just for Polity scores

polity<-subset(qog, select=c(ccode, year, p_polity2))

head(polity)

ccode year p_polity2
1 4 1946 -10
2 4 1947 -10
3 4 1948 -10
4 4 1949 -10
5 4 1950 -10
6 4 1951 -10
merged_data<-merge(x=qog.subset.ciri, y=polity, by.x = c("ccode", "year"),

by.y = c("ccode", "year"))

head(merged_data)

ccode year cname ciri_assn ciri_dommov ciri_formov ciri_injud ciri_physint
1 100 1946 Bulgaria NA NA NA NA NA
2 100 1947 Bulgaria NA NA NA NA NA
3 100 1948 Bulgaria NA NA NA NA NA
4 100 1949 Bulgaria NA NA NA NA NA
5 100 1950 Bulgaria NA NA NA NA NA
6 100 1951 Bulgaria NA NA NA NA NA
ciri_worker ciri_speech p_polity2
1 NA NA -6
2 NA NA -7
3 NA NA -7
4 NA NA -7
5 NA NA -7
6 NA NA -7

5

Transforming Variables

Occasionally, you might need to transform a variable, that is, change the values. For example, if I were to use
GDP in a model, does a one dollar increase in a country’s GDP have much of an inpact on anything? You
would get a very small regression coefficient if you were to include the unchanged value of GDP. However, if
you were to make the values instead GDP in millions of dollars, then your coefficients would not be as small,
and the increases would make more sense. Another example is including income in a model. Income is a
highly skewed variable most of the time. Therefore, many scholars would include the log of income instead of
income in dollars.

There are various ways to transforming a variable. Most of these transformations use R’s arithmetic functions.
To transform a variable, just use one of these operators:

Operator Description
+ Addition
- Subtraction

Multiplication
/ Division
ˆ Exponentiation
log() Natural log

Recoding Variables

Creating Dummy Variables

Sometimes, you need to create a dummy variable to capture a certain concept. For example, if we only car
about democracies compare to the rest of countries, we can use the data from out above dataset to create a
new variable that is just “democracy”. the ifelse command is the easiest way to create a dummy variable.
With the ifelse command, you first give a True/False condition. The next number is the value R should
put if the condition is true. The last number is the value R should put if the condition is false. Below is an
example of creating a “democracy” variable, where a country is considered a democracy if it is a 6 or above
on the polity scale.
merged_data$democracy<-ifelse(merged_data$p_polity2>=6, 1, 0)

head(merged_data)

ccode year cname ciri_assn ciri_dommov ciri_formov ciri_injud ciri_physint
1 100 1946 Bulgaria NA NA NA NA NA
2 100 1947 Bulgaria NA NA NA NA NA
3 100 1948 Bulgaria NA NA NA NA NA
4 100 1949 Bulgaria NA NA NA NA NA
5 100 1950 Bulgaria NA NA NA NA NA
6 100 1951 Bulgaria NA NA NA NA NA
ciri_worker ciri_speech p_polity2 democracy
1 NA NA -6 0
2 NA NA -7 0
3 NA NA -7 0
4 NA NA -7 0
5 NA NA -7 0
6 NA NA -7 0

6

Recoding Categorical Variables

Sometimes, you need to change the labels of a categorical variable. Perhaps these variables are coded with
numbers and you would like value labels instead so R knows that this is a categorical, not continuous variable.
For example, the CIRI scale for the freedom of foreign movement index (ciri_formov) is a three point
scale where 0 means foreign travel is severely restricted, 1 means foreign movement is somewhat restricted,
and 2 means foreign movement is unrestricted. We can get summary statistics from our freedom of foreign
movement variable using the following code:
table(merged_data$ciri_formov)

##
0 1 2
912 1823 3927

We check this first to make sure that our recoding has been successful. To recode using R’s car library, we
need to use the following code that introduces the new command, recode. With this command, we first
create a new object, then assign it values based on the value of the previous incarnation of the variable you
are recoding.
library(car)

Loading required package: carData
merged_data$new_formov<-recode(merged_data$ciri_formov, "0='severely_restricted';

1='somewhat_restricted'; 2='unrestricted'")

table(merged_data$new_formov)

##
severely_restricted somewhat_restricted unrestricted
912 1823 3927

We can even create a new categorical variable from a range of values in a continuous variable. For example,
you might care about the distinctions between democracies (Polity of 6 and above), autocracies (Polity of -6
and below), and anocracies (Polity of -5 to 5). We can use the same recode function to assign those labels to
the appropriate range of Polity scores.
merged_data$regime<-recode(merged_data$p_polity2, "-10:-6='autocracy';

-5:5='anocracy'; 6:10='democracy'")

table(merged_data$regime)

##
anocracy autocracy democracy
2332 3401 3841

In the previous two examples, you can ignore the error message ‘NAs introduced by coercion’. That simply
means that you have NA values in the data, and therefore you have NAs in the resulting recoded variables.

Conclusion

You are now ready to tackle many data management problems! However, I this is the most basic code for
data management and manipulation. There are many more ways to everything I have shown you here. I have
simply shown the simplest way to accomplish simple tasks. As you encounter more and more complex data
problems, more advanced data management will be needed. While these commands could handle most of

7

these problems, they sometimes become clunky and inefficient. This is why we continue to push forward and
learn more about various R packages, especially the dplyr and tidyr packages.

As you work on your own projects, try these commands first. If they do not work or do not complete the
task you need, then explore the other libraries. But until you are comfortable with R, these commands are
perfectly sufficient.

8

	Dealing with Real World Data
	Subsetting Data
	Subsetting by Selecting Certain Variables
	Subsetting by Dropping Certain Variables
	Subsetting By Selecting Certain Values of Variables

	Merging Data
	Transforming Variables
	Recoding Variables
	Creating Dummy Variables
	Recoding Categorical Variables

	Conclusion

