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Introduction to Bivariate Hypothesis Testing

In this week’s classes, we have studied how to find a statistical relationship between two variables. You can
do this in the form of a bivariate hypothesis test. In this document, we will discuss three basic tests: tabular
analysis, difference of means, and a correlation coefficient. These can be done quickly and easily in R. This
document shows step by step how to do each test.

The first step for this lab is to load the data used for all three tests. This follows the same structure as the
previous documents.
#Setting the working directory
setwd("/Users/sarahhunter/Desktop/Data")

#Loading CSV data
mydata<-read.csv("nes2004subset3.csv")

#Getting summary statistics
summary(mydata)

## X religion bush female
## Min. : 1.0 Min. :1.000 Min. :0.000 Min. :0.0000
## 1st Qu.: 302.5 1st Qu.:1.000 1st Qu.:0.000 1st Qu.:0.0000
## Median : 607.0 Median :1.000 Median :1.000 Median :1.0000
## Mean : 606.1 Mean :2.311 Mean :0.508 Mean :0.5319
## 3rd Qu.: 908.5 3rd Qu.:2.000 3rd Qu.:1.000 3rd Qu.:1.0000
## Max. :1212.0 Max. :7.000 Max. :1.000 Max. :1.0000
## NA's :15 NA's :396
## unionhouse partyid eval_WoT eval_HoE
## Min. :0.0000 Min. :0.000 Min. :-2.000 Min. :-2.0000
## 1st Qu.:0.0000 1st Qu.:1.000 1st Qu.:-2.000 1st Qu.:-2.0000
## Median :0.0000 Median :3.000 Median : 1.000 Median :-1.0000
## Mean :0.1724 Mean :2.872 Mean : 0.152 Mean :-0.3467
## 3rd Qu.:0.0000 3rd Qu.:5.000 3rd Qu.: 2.000 3rd Qu.: 2.0000
## Max. :1.0000 Max. :6.000 Max. : 2.000 Max. : 2.0000
## NA's :6 NA's :17 NA's :29 NA's :36
## ideology bush_therm education income
## Min. :1.000 Min. : 0.00 Min. :0.000 Min. : 1.00
## 1st Qu.:3.000 1st Qu.: 30.00 1st Qu.:3.000 1st Qu.:11.00
## Median :4.000 Median : 60.00 Median :4.000 Median :16.00
## Mean :4.268 Mean : 54.94 Mean :4.305 Mean :14.97
## 3rd Qu.:6.000 3rd Qu.: 85.00 3rd Qu.:6.000 3rd Qu.:20.00
## Max. :7.000 Max. :100.00 Max. :7.000 Max. :23.00
## NA's :288 NA's :141
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#Get the first 5 lines of data

head(mydata)

## X religion bush female unionhouse partyid eval_WoT eval_HoE ideology
## 1 1 7 0 0 1 3 NA 0 4
## 2 2 1 0 0 0 2 -1 -1 4
## 3 3 1 1 1 0 6 2 2 6
## 4 4 1 NA 0 0 3 -2 -1 4
## 5 5 1 1 1 0 6 2 2 6
## 6 6 1 NA 0 0 3 -2 -2 6
## bush_therm education income
## 1 70 7 17
## 2 40 4 19
## 3 100 6 23
## 4 50 2 3
## 5 100 3 12
## 6 60 7 12

Tabular Analysis

Tabular analysis is a method of finding relationships between two categorical variables. This method is also
frequently called “Cross Tabs”. Tabular Analysis starts by looking at a table of categorical variables. The
table basically breaks down how many (and/or what percent) of observations are in each two categories. For
example:

Policy Republican Democrat
Support 285 60
Oppose 208 432

In the table above, you see that 285 Republicans and 60 Democrats support a certain policy while 208
Republicans and 432 Democrats oppose a certain policy. We use tabular analysis to see if there is a pattern
in that table.

In R, it is easy to get the above table (called a frequency table) using the table command. For the rest of
this section, we will use the above data set. The variables used for this example are bush (if the respondent
voted for George W. Bush in 2004) and unionhouse (whether or not a member of the household is a member
of a union). The following code demonstrates how to get a frequency table from R:
table(mydata$bush, mydata$unionhouse)

##
## 0 1
## 0 300 97
## 1 356 54

The rows of the tables refer the first variable entered in the table command. Therefore, the first row is when
bush=0, while the first column is when unionhouse=0. So, the upper left cell of the table contains the
number of observations for which the respondent did not vote for George W. Bush and they contain no union
members in that household.

We can also get the proportion of observations that are in each cell with the prop.table command, which
you can create from a table object.
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t<-table(mydata$bush, mydata$unionhouse)

prop.table(t)

##
## 0 1
## 0 0.3717472 0.1201983
## 1 0.4411400 0.0669145

The idea of tabular analysis is to compare the actual data to what we would expect if there were no relationship
between the variables. For example, say 35 percent of the sample support a certain policy and 65 percent
do not support the policy. We want to know if being a Republican is statistically related to supporting the
policy. If there were no relationship between being a Republican and supporting the policy, we would expect
Republicans to reflect the same level of support for the policy that is seen in the entire population. In this
example, if there were no relationship between partisanship and policy support, 35 percent of Republicans
and 35 percent of Democrats would support this policy. The goal is to see how different our actual outcomes
differ from the expected outcome. The more different the outcome from the expect, the more confidently we
can say that there is a systematic relationship between the two variables. We can measure that difference
with a test statistic

The test statistic used with Tabular Analysis is call χ2, or chi squared. This test does exactly as described
above: it compares the actual data to the expected results if there were no relationship. χ2 is calculated
using simple mathematical formula that only uses basic arithmetic. The basic formula is:

χ2 =
∑ (O−E)2

E

where O stands for the Observed quantity and E stands for the Expected quantity if the null hypothesis were
true. This calculation ( (O−E)2

E ) is done for all cells of the table and added together (as indicated by the
summation symbol (

∑
).

An Example

In our union membership and votes for George W. Bush example above, we can use the frequency and
proportion tables above to help us calculate χ2 by hand. The first thing we need to do is to make a table of
what we would expect if there were no relationship between union membership and voting for George W.
Bush. With our data, we can use the table command to find out the percentage of our sample voted for
Bush:
#The table command tells you how many people voted for Bush (bush=1)
#and how many did not vote for Bush (bush=0),

table(mydata$bush)

##
## 0 1
## 399 412
#But, there is some missing data, so we will need to use the table command
#for both variables again:

table(mydata$bush, mydata$unionhouse)

##
## 0 1
## 0 300 97
## 1 356 54
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#Then we use basic math to calculate the percentage of the
#sample voted for Bush (the row where bush=1)

410/(397+410)

## [1] 0.5080545

This tells us that 50.8% of our total sample voted for George W. Bush. If there is no relationship between
union membership and vote choice, that same percentage should be reflected among union households.
Therefore, we can fill out the table to look like:

Vote Choice Union House Not Union House
Bush 50.8% 50.8%
Not Bush 49.2% 49.2%

The chi2 calculation requires that we have the value of the expected outcome. This means we have to find
the number of people in each category. We can do this with basic math again, by multiplying the number
of people in a union by 50.8% to get the expected number of union households that voted for George W.
Bush. We get the total number of union households in the sample by adding the two rows together for union
membership in the from the results of the table command above. See below for the example:

Vote Choice Union House Not Union House
Bush 50.8% * 151 50.8% * 656
Not Bush 49.2% * 151 49.2% * 656

We can calculate this in R by:
#Expected Union members that voted for Bush
.508*151

## [1] 76.708
#Expected Union members that did not vote for Bush
.492*151

## [1] 74.292
#Expected Non-Union members that voted for Bush
.508*656

## [1] 333.248
#Expected Non-Union members that did not vote for Bush
.492*656

## [1] 322.752

Then you can plug in the numbers to get the expected outcome table:

Vote Choice Union House Not Union House
Bush 76.708 333.248
Not Bush 74.292 322.752

The actual outcome in the data is shown in the following table:
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Vote Choice Union House Not Union House
Bush 54 356
Not Bush 97 300

We then plug these numbers into the chi2 equation:

χ2 =
∑ (O−E)2

E

χ2 = (54−76.708)2

76.708 + (97−74.292)2

74.292 + (356−333.248)2

333.248 + (300−322.752)2

322.752

χ2 = 6.722288 + 6.940899 + 1.553358 + 1.603874

χ2 = 16.8204

That is our χ2 value. However, that does not tell us if these results are significantly different from what we
would expect if there were not relationship between union membership and vote choice. For this, we need to
find the degrees of freedom which are essentially the amount of variance that we have to explain. In the
χ2 hypothesis test, we calculate the degrees of freedom by:

d.f. = (r − 1)(c− 1)

where r is the number of rows and c is the number of columns in the table. For our example, we have 2 rows
and 2 columns and calculate the degrees of freedom as:

d.f. = (2− 1)(2− 1) = 1

Therefore, we have 1 degree of freedom. We use this information to then find the critical value. The
critical value in this context is the minimal value of χ2 at which statistical significance is achieved. You
use the degrees of freedom and your chosen alpha level (or the probability of making a type I error). In
political science, we usually look for .05. The next step is to look up the critical value in a table (found here
https://www.mathsisfun.com/data/chi-square-table.html). Looking at the table for 1 degree of freedom and
a type I error rate of .05, we find that the critical value of χ2 is 3.841. Because our χ2 value is 16.8204, which
is greater than 3.841, we can reject the null hypothesis and conclude that there is a relationship between
union membership and vote choice.

However, this does take time. Especially if there are more rows and columns. The good news is that R can
estimate a tabular analysis easily and quickly.

Estimation

Estimating a tabular analysis model is quick and simply in R. You will first need to install two packages:
gmodels and gtools. You then load those two packages. Using the command CrossTable, you can get a
frequency table and the χ2 score for the two variables.
#Install Packages needed (commented out here because already installed on my computer)

#install.packages("gmodels")
#install.packages("gtools")

#Load packages

library(gmodels)
library(gtools)

#The Model:
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CrossTable(y=mydata$bush , x=mydata$unionhouse, prop.c=FALSE,
prop.t=FALSE, prop.chisq=FALSE, chisq=TRUE, format="SPSS")

##
## Cell Contents
## |-------------------------|
## | Count |
## | Row Percent |
## |-------------------------|
##
## Total Observations in Table: 807
##
## | mydata$bush
## mydata$unionhouse | 0 | 1 | Row Total |
## ------------------|-----------|-----------|-----------|
## 0 | 300 | 356 | 656 |
## | 45.732% | 54.268% | 81.289% |
## ------------------|-----------|-----------|-----------|
## 1 | 97 | 54 | 151 |
## | 64.238% | 35.762% | 18.711% |
## ------------------|-----------|-----------|-----------|
## Column Total | 397 | 410 | 807 |
## ------------------|-----------|-----------|-----------|
##
##
## Statistics for All Table Factors
##
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 16.82047 d.f. = 1 p = 4.108774e-05
##
## Pearson's Chi-squared test with Yates' continuity correction
## ------------------------------------------------------------
## Chi^2 = 16.08816 d.f. = 1 p = 6.046096e-05
##
##
## Minimum expected frequency: 74.28377

Interpretation

As you can see, R gives not only the actual χ2 score, but also the p-value associated with that χ2 value. In
this case, the p-value is .0000410877, which much less than our .05 threshold. The correct interpretation of
this is that, if the null hypothesis (no relationship) were true, we would get these results or something more
extreme 0.00410877 percent of the time. Therefore, we can conclude that there is a systematic relationship
between union membership and vote choice.

Difference of Means

While the χ2 test is good for testing associations between two categorical variables, the difference of means
test can test for associations between a categorical independent variable and a continuous dependent variable.
A difference of means test can also be called a t-test. A difference of means tests essentially tells you how
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different the mean of the dependent variable is in one category than in another. For example, say the average
age of those that support one policy is 37 and the average age that opposes that policy is 58. how do we
know that that difference is statistically significant? The difference of means test can tell us this. In this
section, we will show an example of how to do a difference of means test by hand and then how to do the
same calculations in R.

Example

The best way to start understanding how a difference of means test work is to visually look at the data.
Our running example is that we believe that those that identify as female give a different score to President
George W. Bush on the feeling thermometer, which is a 0-100 scale where 0 means the respondent has nothing
nice to say about the subject and 100 means they have nothing negative to say. Respondents in this survey
were all asked to give President Bush a score on the feeling thermometer.

To visually inspect the data to see if there is something there, we can use what is called a Box and Whisker
plot. This is a plot that shows the distribution of a continuous variable. In R, this is a fairly easy plot:
#To make a basic boxplot

boxplot(bush_therm~female, data=mydata)
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We can also use the dplyr package to get the means by group:
#install.packages("dplyr")

library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
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##
## intersect, setdiff, setequal, union
m<-mydata %>% group_by(female) %>%

summarize_at(vars(bush_therm), funs(mean(., na.rm=TRUE), sd, length))

## Warning: `funs()` is deprecated as of dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
## # Simple named list:
## list(mean = mean, median = median)
##
## # Auto named with `tibble::lst()`:
## tibble::lst(mean, median)
##
## # Using lambdas
## list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
m

## # A tibble: 2 x 4
## female mean sd length
## <int> <dbl> <dbl> <int>
## 1 0 56.6 32.8 565
## 2 1 53.5 34.2 642

So, we can see that the mean Bush Thermometer score for those respondents that identify as female is 53.52,
while the mean for others is 56.56. From there, we need to calculate the t-score, which is the test statistic for
the difference of means hypothesis test. The formula for the t-score is:

t = Ȳ1−Ȳ2
se(Ȳ1−Ȳ2)

where Ȳ1 is the mean of Y in group 1, Ȳ2 is the mean of Y in group 2, and se(Ȳ1 − Ȳ2) is the joint standard
error. The standard error is calculated as:

se(Ȳ1 − Ȳ2) =
√

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2 ∗

√
1

n1
+ 1

n2

where n1 is the number of observations in group 1, n2 is the number of observations in group 2, s1 is the
standard deviation in group 1, and s2 is the standard deviation in group 2.

Currently, we have all the pieces we need to calculate a t-score. The information we need is thus:

Group Mean Standard Deviation Number of obs
female=0 56.55575 32.77019 565
female=1 53.52025 34.17844 642

And now we can plug those numbers into the equation for the standard error:

se(Ȳ1 − Ȳ2) =
√

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2 ∗

√
1

n1
+ 1

n2

se(Ȳ1 − Ȳ2) =
√

(565−1)32.770162+(642−1)34.178442

565+642−2 ∗
√

1
565 + 1

642

se(Ȳ1 − Ȳ2) =
√

605670.2+748794.3
1205 ∗

√
1

565 + 1
642

se(Ȳ1 − Ȳ2) =
√

1124.037 ∗ 0.05768487
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se(Ȳ1 − Ȳ2) = 1.933981

With that standard error, we can now calculate the t-score:

t = Ȳ1−Ȳ2
se(Ȳ1−Ȳ2)

t = 56.55575−53.52025
1.93398

t = 1.569561

Therefore, the value of our test statistic is 1.569561. However, we need to know the critical value for the
t-score, the same process as the χ2 test. In this case, you go find the t-score table (http://www.ttable.org).
First, we need the degrees of freedom for the t-score. This is different than the χ2 degrees of freedom
calculation. In the case of the t-score, the degrees of freedom are the total sample size minus 2 (d.f. = n− 2).
Therefore, the degrees of freedom here is 1205. We will also use the significance level of .05. One note on
t-tests is that you must use the “two-tailed” .05 column. (We will discuss in class what this means). The table
tells us that the critical value for the .05 significance level for 1000 degrees of freedom is 1.962. Our t-score
is 1.569561, which is less than 1.962. As a result, we cannot reject the null hypothesis that the difference
of means between the two groups is 0. We then cannot conclude that there is a relationship between Bush
thermometer ratings and gender identity.

Estimation

R can do the above calculation easily and efficiently using the t.test command. Below shows the code.
One thing to remember is the order of the variables. In the t.test command, you should always put the
dependent variable first (before the ~ (called a tilde)).
t.test(mydata$bush_therm~mydata$female, alternative="two.sided", var.equal=FALSE)

##
## Welch Two Sample t-test
##
## data: mydata$bush_therm by mydata$female
## t = 1.5738, df = 1196.2, p-value = 0.1158
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7486974 6.8197034
## sample estimates:
## mean in group 0 mean in group 1
## 56.55575 53.52025

Interpretation

The interpretation of the difference of means test in R is really quite simple. Look for the p-value. In this
case the p-value in this test is 0.1158, which is much larger than .05. Therefore we cannot reject the null
hypothesis and cannot draw any conclusions.

Correlation Coefficient

When we have two continuous variables, we can use yet a different bivariate hypothesis test: the correlation
coefficient. The correlation coefficient, also called Pearson’s r, can quantify the general pattern of association
between two continuous variables. Correlation begins with the concept of covariance which is a difference
quantity that essentially measures how two continuous variables move together. It is calculated as:

covXY =
∑n

i=1
(Xi−X̄)(Yi−Ȳ )

n−1
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You turn the covariance into the correlation coefficient (Pearson’s r) by scaling the covariance by the individual
variances of the variables:

r = covXY√
varX varY

Pearson’s r is a score that ranges between -1 and +1. If there were a perfectly positive linear relationship
between two variables, Pearson’s r would be 1. On the other hand, if there were a perfectly negative linear
relationship between two variables, Pearson’s r would be -1. The weaker the relationship between the two
variables, the closer Pearson’s r is to zero. Below, I demonstrate this visually.

First, here is a scatterplot of two continuous variables: income and Bush’s feeling thermometer scores:
plot(mydata$income, mydata$bush_therm, xlab="Income", ylab="Bush Thermometer Score")
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To get the line equation for line of best fit for the above scatter plot, we can use the line command:
line(mydata$income, mydata$bush_therm)

##
## Call:
## line(mydata$income, mydata$bush_therm)
##
## Coefficients:
## [1] 32.727 1.818

line gives you the y intercept and the slope for the line of best fit. You can add this line to the scatterplot
using the abline command:
plot(mydata$income, mydata$bush_therm, xlab="Income", ylab="Bush Thermometer Score")
abline(a=32.727, b=1.818, col="red")
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The slope of the line is a good indicator of a relationship, but the correlation coefficient is a standardized
quantity, meaning that correlations can be directly compared. Slopes, on the other hand, depend on the
scale of the variables in questions. Obtaining Pearson’s r from R is quite simple. You use the cor command
and enter your two variables inside the parentheses. However, cor only works when you have no missing
observations. In order to use cor on a data set with missing values, you have to add use="complete.obs"
at the end of the line.

Estimation

#Getting Pearson's r

r<-cor(mydata$income, mydata$bush_therm, use="complete.obs")

r

## [1] 0.08800578

You can also obtain a p-value for Pearson’s r, which can tell you if the correlation is statistically significant,
or significantly difference from zero. You do this by essentially calculating a difference of means test. In this
t-test, the first group mean is the Pearson’s r score. The second group mean is zero, essentially taking the
place of a hypothetical second group that has no relationship between the two continuous variables (r=o).
Below is the procedure to get the p-value:
#First, square pearson's r

r2<-cor(mydata$income, mydata$bush_therm, use="complete.obs")^2

#To Get a p-value for the Pearson's r

#First, we need sample size:
length(mydata$income)#Gives us the number of observations for this variable (1066)

## [1] 1207
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#To get the t score
t.cor<-(r*sqrt(1066-2))/(sqrt(1-r2))

t.cor

## [1] 2.881843
#For a p-value, you can look it up or:

p<-2*pt(-abs(t.cor), df=1064)#pt gives you the area under the curve at that t-score and above

p

## [1] 0.004033012

You can also use one line of code to get both the p-value and the correlation coefficient:
r.test<-cor.test(mydata$income, mydata$bush_therm, use="complete.obs")

r.test

##
## Pearson's product-moment correlation
##
## data: mydata$income and mydata$bush_therm
## t = 2.8818, df = 1064, p-value = 0.004033
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.02811183 0.14727009
## sample estimates:
## cor
## 0.08800578

Interpretation

The interpretation of Pearson’s r is very similar to that of the other hypothesis tests in this document. Look
at the p-value. A p-value less than .05 indicates statistical significance. Therefore, the p-value of .004033 is
less than .05 and we can then reject the null hypothesis (that there is no relationship between a respondent’s
income and their rating of Bush on the feeling thermometer scale). We can then conclude that income is
positively correlated with higher ratings of President Bush on the feeling thermometer scale.

Conclusion

Overall, bivariate hypothesis tests are useful starting points. However, remember that bivariate hypothesis
testing does not allow you to control for confounding factors. This means that finding a spurious correlation
is not only possible, but probable. You cannot make causal arguments with a bivariate hypothesis test. But,
they are still useful to know and practice.
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