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Preparing the Data

JAGS requires a bit more data management than is necessary for the classical linear regression model. The
most important difference is that JAGS requires data be in a list format in contrast to the data frame format
required for canned models like glm or lm. The following example uses the Prestige data from the car package.
The first step is to load the data into R as usual. Our practice data is from R already, so we can skip this
step. Once we have the data into R, we need to take each variable out of the data and make it into its own
vector. Once that is done, we can put all of the data into a list.
#The necessary packages
library(car)

## Loading required package: carData
library(R2jags)

## Loading required package: rjags

## Loading required package: coda

## Linked to JAGS 4.3.0

## Loaded modules: basemod,bugs

##
## Attaching package: 'R2jags'

## The following object is masked from 'package:coda':
##
## traceplot
library(rjags)
library(ggplot2)

#making vectors out of each variable
income<-Prestige$income
education<-Prestige$education
prestige<-Prestige$prestige
N<-length(income)

#turning those vectors into a list
jagsdata<-list("income", "education", "prestige", "N")
jagsdata<-list(income=income, education=education, prestige=prestige, N=N)
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Writing the Model

The next step in your model is to write the model. This includes specifying your priors with both the mean
and variance. Every stochastic element of the model needs a prior. The one important thing to remember in
JAGS is that the second parameter of a distribution is NOT the variance. It is actually the precision, which
is the inverse of the variance. So, remember to put the precision in the JAGS code, not the variance.

Choosing a Prior

You can choose your prior to reflect what you need from the prior. You can choose a prior that is as
informative as you want. Each prior is specified in the model as a distribution of your choice with parameters
that dependent on the distribution chosen. Section 9.2 of the JAGS User Manual discusses probability
distributions in more detail and describes how each is parameterized. Here, I will simply go over the most
common distributions and their parameters:

Probability Distribution Call in JAGS Parameters
Normal Distribution dnorm mean, precision
Uniform Distribution dunif minimum, maximum
Gamma Distribution dgamma shape, rate

To understand what these distributions do, you can plot them in R using the base plot function. You just
need to do many random draws from that distribution using the r prefix and plot the density function of
those random draws. The r prefix outside of JAGS uses different, but related parameters. You can find how
R parameterizes these functions using the ? symbol before the command to get the help file. Below, I have
plotted versions of distributions with different parameterizations. First, I plot the uniform distribution:
#Take 100000 random draws from a unifrm distribution from -1- t0 10
d<-runif(100000, min=-50, max=50)

#Make it into a dataframe for ggPlot
d<-as.data.frame(d)

ggplot(d, aes(x=d))+ geom_density(fill="skyblue3", color="skyblue3", alpha=.4)+theme_bw() +labs(title="Uniform Prior Distribution", x="x", y="Prior Probability")
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Uniform Prior Distribution

Below is the Normal distribution with the same mean and four different standard deviations.
norm1<-rnorm(100000, mean=0, sd=5)
norm2<-rnorm(100000, mean=0, sd=2)
norm3<-rnorm(100000, mean=0, sd=1)
norm4<-rnorm(100000, mean=0, sd=.5)

norms<-as.data.frame(cbind(norm1, norm2, norm3, norm4))

ggplot(data=norms)+geom_density(aes(x=norm1, color="norm1", fill="norm1"), alpha=.4)+geom_density(aes(x=norm2, color="norm2", fill="norm2"), alpha=.4)+geom_density(aes(x=norm3, color="norm3", fill="norm3"), alpha=.4)+geom_density(aes(x=norm4, color="norm4", fill="norm4"), alpha=.5)+theme_bw()+labs(x="X", title="Normal Distributions with Varying Standard Deviations")+scale_colour_manual(name="Normal Distribution", values=c(norm1="gray85", norm2="gray56", norm3="gray35", norm4="gray1"), labels=c(norm1="Mean=0, SD=5", norm2="Mean=0, SD=2",norm3="Mean=0, SD=1",norm4="Mean=0, SD=.5"))+scale_fill_manual(name="Normal Distribution", values=c(norm1="gray85", norm2="gray56", norm3="gray35", norm4="gray1"), labels=c(norm1="Mean=0, SD=5", norm2="Mean=0, SD=2",norm3="Mean=0, SD=1",norm4="Mean=0, SD=.5"))+theme(plot.title=element_text(face="bold"))+theme(legend.position=c(.85, .85))
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Normal Distributions with Varying Standard Deviations

The Gamma distribution is useful as a prior for the variance in a Bayes model because it is bounded by 0. It
cannot be less than 0, just like a variance must be positive. The Gamma distribution can be parameterized
in many different ways. Be sure to check which parameters R uses (sometimes it uses rate, other times, it
uses scale). JAGS uses shape and rate. I show an example below:
#100000 random draws from a Gamma distribution

gam1<-rgamma(100000, shape=.1, rate=.1)
gam2<-rgamma(100000, shape=1, rate=1)

#Using base plot for density

par(mfrow=c(1,2))

plot(density(gam1), main="Gamma Distribution (0.1, 0.1)")
plot(density(gam2), main="Gamma Distribution (1.0, 1.0)")
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Full Model Specification

For our example, the full model specification is:

Yi = α+ β1 ∗ incomei + β2 ∗ educationi

where

y ∼ N (µ, τ)

α ∼ N (0, 1)

β1 ∼ N (0, 1)

β2 ∼ N (0, 1)

τ ∼ Gamma(.1, .1)

For this model, I have used a standard normal distribution as the prior on all the estimated parameters,
except the precision (which uses a Gamma distribution). We translate that model specification to model
two in one of two ways: either a model plain text file or a function in R. For smaller models, the function
methods tend to be easier. For larger, more complex models, the text file can be easier with which to work.
Just remember to save the model file in your R working directory. In this example, I am going the function
route. The following code translates the above model into a JAGS model:
prestige.model.jags<-function(){ #Name the model, tell R it is a function

for(i in 1:N){ #Start the loop over the observations
prestige[i]~dnorm(mu[i], tau) #prior on prestige
mu[i]<-alpha + beta1*education[i] + beta2*income[i]
#models the mean of the prior distribution of prestige

}
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alpha~dnorm(0,.01) #prior on the intercept
beta1~dnorm(0, .1) #prior on beta1
beta2~dnorm(0, .1) #prior on beta2
tau~dgamma(.1,.01) #prior on the precision

}

Implementing the Model

When implementing the model, you must make decisions about and include the following features:

• Number of chains
• Number of Iterations
• Initial values
• The parameters to monitor
• The Burn-in period

Chains

n.chains :For the number of chains, we nearly always run at least two chains in your model. This has a lot
to do with convergence of the model, which we will discuss tomorrow.

Iterations

n.iter: This tells you how many times to estimate the model. The more complicated the model, the more
iterations that are needed in order for the model for converge.

Initial Values

inits: Initial values tells the sampling algorithm where to start. You do not have to provide initial values
for your model, but it can help speed up the model if you do. This model allows JAGS to randomly pick the
initial values using the inits=NULL option.

Parameters to Monitor

parameters.to.save=: You do not have to save the estimates for every estimated parameters. However, you
do need to tell JAGS which parameters you will need to save, and therefore provide output. We first need to
create a vector of parameters to watch using the c() command. I called mine params. Like any function in
R, as long as you have the order nearly correct, you do not have to type the option and assign it value. As
you can see in my model code, I simply use the option of the name (params) of the parameters I wanted
to save (instead of parameters.to.save=params). This is simply laziness on my part. It does not matter
which way you do it.

Burn-in Periods

n.burnin: You do need to give the sampler a warm-up period. The first few iterations of the sampling
algorithm as essentially random guesses to seek the area of highest density. Since the first few iterations are
junk, we usually throw them out. You can tell JAGS when to start saving results. For this model, I used 400
iterations as a burn-in period. I usually use a burn-in period of about 10% of the total iterations, but there
really is not strict rule guiding the choice of burn-in period. As long as the model converges, it only matters
a little.
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params<-c("alpha", "beta1", "beta2") # Tell JAGS which parameters to watch

#fit the model
fit<-jags(data=jagsdata, inits=NULL, params, n.chains=2, n.iter=4000,

n.burnin=400, model.file=prestige.model.jags)

## module glm loaded

## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 102
## Unobserved stochastic nodes: 4
## Total graph size: 611
##
## Initializing model
print(fit)

## Inference for Bugs model at "/var/folders/dx/pkx9cyj1089843ljm_jzj3pm0000gn/T//RtmpjhUi9E/model726b6fab127f.txt", fit using jags,
## 2 chains, each with 4000 iterations (first 400 discarded), n.thin = 3
## n.sims = 2400 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
## alpha -5.931 3.053 -11.753 -8.003 -5.917 -3.940 0.205 1.001 2400
## beta1 4.042 0.333 3.382 3.828 4.044 4.267 4.675 1.002 1500
## beta2 0.001 0.000 0.001 0.001 0.001 0.002 0.002 1.001 2400
## deviance 709.796 2.832 706.285 707.672 709.157 711.155 716.851 1.001 2400
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 4.0 and DIC = 713.8
## DIC is an estimate of expected predictive error (lower deviance is better).
# Update if necessary, depending on convergence
fit.upd<-update(fit, n.iter=1000)
fit.upd<-autojags(fit)

print(fit)

## Inference for Bugs model at "/var/folders/dx/pkx9cyj1089843ljm_jzj3pm0000gn/T//RtmpjhUi9E/model726b6fab127f.txt", fit using jags,
## 2 chains, each with 4000 iterations (first 400 discarded), n.thin = 3
## n.sims = 2400 iterations saved
## mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
## alpha -5.931 3.053 -11.753 -8.003 -5.917 -3.940 0.205 1.001 2400
## beta1 4.042 0.333 3.382 3.828 4.044 4.267 4.675 1.002 1500
## beta2 0.001 0.000 0.001 0.001 0.001 0.002 0.002 1.001 2400
## deviance 709.796 2.832 706.285 707.672 709.157 711.155 716.851 1.001 2400
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 4.0 and DIC = 713.8
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## DIC is an estimate of expected predictive error (lower deviance is better).

Model Presentation

Presenting a Bayesian model is a lot like presenting a logit or probit model: tables are fine, but figures are
best. The following section discusses ways to present results for both.

Tables

Bayesian models do not p lay nicely with the R tools we use to create nice tables (i.e. Stargazer, xtable).
However, we can still produce a table with some quick adjustments. The first step is to decide which columns
of the summary that you need.
#The columns you need
fit$BUGSoutput$summary[, c(1,2,3,7)]

## mean sd 2.5% 97.5%
## alpha -5.930808283 3.052963609 -1.175314e+01 2.049925e-01
## beta1 4.041824963 0.333109376 3.381925e+00 4.674825e+00
## beta2 0.001380093 0.000225326 9.430733e-04 1.809296e-03
## deviance 709.796365767 2.832372939 7.062854e+02 7.168514e+02

Once you know that, you can use matrix notation to select what you need and use that matrix to make an
xtable object.
library(xtable)

model.table<-xtable(fit$BUGSoutput$summary[, c(1, 2,3,7)], digits=3)

print(model.table, type="latex")

## % latex table generated in R 3.6.3 by xtable 1.8-4 package
## % Tue May 26 11:00:30 2020
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrr}
## \hline
## & mean & sd & 2.5\% & 97.5\% \\
## \hline
## alpha & -5.931 & 3.053 & -11.753 & 0.205 \\
## beta1 & 4.042 & 0.333 & 3.382 & 4.675 \\
## beta2 & 0.001 & 0.000 & 0.001 & 0.002 \\
## deviance & 709.796 & 2.832 & 706.285 & 716.851 \\
## \hline
## \end{tabular}
## \end{table}

After you make the table, you will still need to make adjustments to names of the variables. Notice that the
output tells us the names of the parameters we monitored. You can do this easily in Latex or Word.

Figures

One of the best ways to display regression results with Bayes is to use plots. However, you need to convert
our results from a JAGS object to an mcmc object. From an mcmc object, you can then convert the model
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results into a matrix, then a data frame. Each type of object is useful to some postestimation, but not others.
You do this by:
#Turn the JAGS object into MCMC object to manipulate
fit.mcmc<-as.mcmc(fit)

#Also, turn into a matric or dataframe for ease
fit.mat<-as.matrix(fit.mcmc)
fit.df<-as.data.frame(fit.mat)

Once your results are in the proper format, you can start plotting. You can create any of your favorite plots
from your model once the results are in the data frame format. Here is an example of using ggPlot2 to plot
the posterior density that shows the density in relation to 0. ggPlot requires the data be in a data frame
format.
##ggPlot of the posteror densities
library(ggplot2)

ggplot(fit.df, aes(x=beta1))+geom_density(color="lightskyblue2",
fill="lightskyblue2", alpha=.4)+geom_vline(xintercept = 0)+theme_bw()+
labs(title="Posterior Density for The Effect of Education on Prestige",
x="Coefficient of Education")
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ggplot(fit.df, aes(x=beta2))+geom_density(color="lightskyblue2",
fill="lightskyblue2", alpha=.4)+geom_vline(xintercept = 0)+theme_bw()+
labs(title="Posterior Density for The Effect of Income on Prestige",
x="Coefficient of Income")
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There are many of other plots available for Bayesian models, and they all look fairly cool and have some
convenient canned commands. There are many plots you can do, these are just a few. The first package is
mcmcplots and the second is ggmcmc. These two packages both start with mcmc objects. You do need to
convert the mcmc object for the ggmcmc package.
#cool Bayes plots
#install.packages("mcmcplots")
library(mcmcplots)

## Registered S3 method overwritten by 'mcmcplots':
## method from
## as.mcmc.rjags R2jags
#Density Plots
denplot(fit.mcmc, parms = c("alpha", "beta1", "beta2"))
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#Dot Plots
caterplot(fit.mcmc)
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caterplot(fit.mcmc, parms = c("alpha", "beta1", "beta2"),
labels = c("Intercept", "Education", "Income"))
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#install.packages("ggmcmc")
library(ggmcmc)

## Loading required package: dplyr

##
## Attaching package: 'dplyr'

## The following object is masked from 'package:car':
##
## recode

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

## Loading required package: tidyr

## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
#Convert mcmc object to ggs object
fit.gg<-ggs(fit.mcmc)

#Individual plots

#Histogram
ggs_histogram(fit.gg)
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#Density
ggs_density(fit.gg)
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#Traceplots (useful for convergence diagnostics)
ggs_traceplot(fit.gg)
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ggs_running(fit.gg)
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Getting the proportion of the distribution above or below zero (depending on the sign), is fairly easy. It uses
native R functions. The one caveat is that you need to know the shape of your posterior density. You can
know this by using conjugate priors. Below is the code to find the proportion of the distribution above zero
for β1 and β2 and below zero for α.
#For beta 1
1-pnorm(0, mean=mean(fit.df$beta1), sd=sd(fit.df$beta1))

## [1] 1
#For beta 2

1-pnorm(0, mean=mean(fit.df$beta2), sd=sd(fit.df$beta2))

## [1] 1
#For alpha

pnorm(0, mean=mean(fit.df$alpha), sd=sd(fit.df$alpha))

## [1] 0.9739701

For the rest of this lab, I would like you to estimate the previous model 5 more times all with different priors.
I encourage you to try both informative and uninformative priors.
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